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ABSTRACT

Several heuristics have been developed for the multiple-valued logic minimiza-

tion problem, and while each claims some advantages in specific examples, none is

significantly better than the others. Heuristic methods are interesting because exact

minimization methods are extremely time-consuming. With the computer software

developed at NPS called HAMLET, users can easily investigate their own heuristics.

The primary goal of this thesis is to develop an algorithm that makes the min-

imization of multiple-valued logic functions reasonably close to the optimal solution.

The neighborhood decoupling (ND) algorithm is built on top of HAMLET. The idea

of the ND algorithm is: always select the most isolated minterm as well as choose the

most isolated implicant.

In this thesis, the implementation of the ND algorithm is described. A perfor-

mance analysis of the ND algorithm is presented by comparing results and computation

time with two published algorithms, Pomper and Armstrong's and Dueck and Miller's.
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I. INTRODUCTION

A. MOTIVATION

Binary computing systems have been used for about 30 years. The very-large-scale-

integration (VLSI) technology has resulted in increasingly smaller circuits. However.

the pace of reduction has showed because of two major problems, bus connection and

pin limitation. In recent years, multiple-valued logic has been proposed to solve those

problems [Ref. 1, 2]. Since the programmable logic array (PLA) is a basic tool for

binary VLSI design, it is expected to be important in multiple-valued logic (IVL). This

observation has inspired the work reported in this thesis.

The truncated sum (TSUM) operation of multiple-valued logic is easily imple-

mented in the charge-coupled devices (CCD) technology [Ref. 3, 4]. Several heuristics

have been developed for the multiple-valued logic minimization involving TSUM and each

claims some advantages in specific examples, but none of them is consistently better than

the others [Ref. 5, 6, 7, 8, 9, 10]. Heuristic methods are interesting because of exact min-

imization methods are extremely time-consuming. Until now, only Tirumalai and Butler

[Ref. 9] have analyzed the performance of different MVL minimization algorithms. Their

study is limited to two-variable four-valued functions. Three open questions exist:

1. In the case of two-variable four-valued functions, can we design an algorithm which
is better than previously proposed algorithms?

,2. What is the algorithm performance if we increase the number of variables (greater
than two)?

3. What are the computation time requirements for the various algorithms?

With the computer software developed at Naval Postgraduate School called HAM-

LET (Heuristic Analyzer for Multiple-valued Logic Expression Translation) [Ref. 10],



users can easily investigate their own heuristics. For example, the neighborhood de-

coupling (ND) algorithm described in this thesis is built as one independent option of

HAMLET. This thesis reexamines the algorithms used in HAMLET and analyzes the

new method, the ND algorithm. It also investigates each algorithm under four different

function settingp and summarizes their performance and computation time.

B. BACKGROUND

The heuristic approaches in HAMLET can all be classified as greedy algorith.,,s.

The HAMLET execution procedure of these algorithms is abstracted as follows. Formal

definitions will be covered in the next chapter. Let f be a multiple-valued function and

let a, a minterm, be an assignment of values to the variables of f such that f 5 0.

/*~

Input: let the M be the set of minterms of a function f;

Output: the minimized sum of product, S, of the original function:

{

S4-O'

While (M $ q) do {

pick one minterm a from M;

find an implicant I,, which covers a;

S - IUS;

subtract I, from f;

2



TABLE 1.1: Summary of Three Heuristic Algorithms
Heuristic Algorithm Choice of Minterm Choice of Implicant

Pomper and Armstrong [Ref. 5] Random Drives Most Minterms to
(1981) 0 or don't-care

Besslich [Ref. 6] Smallest Weight Drives Most Minterms to
(1986) (Most Isolated) 0 or don't-care

Dueck and Miller [Ref. 7, 8] Largest IF Largest BCR
(1988) (Most Isolated) L

Table 1.1 shows three previously proposed algorithms. Each algorithm differs from

the others in the manner of picking the minterms (a) and finding the implicants (I,).

For example, in the above recursive search procedure, the input function expression f is

evaluated at minterm a. Next an implicant I, is chosen which covers a. Then, implicant

I, is added to output solution set S, and is subtracted from function f.

Pomper and Armstrong introduced a heuristic algorithm that picks a randomly (as

long as a is in the set of minterm M) and finds I, (as long as L covers a) which drives the

most minterms to 0 or don't-care when I, subtracted from function f [Ref. 5]. In 1986,

Besslich presented a direct cover algorithm, according to weight transformations. The

Besslich algorithm picks a with the smallest weight (most isolated minterm) and finds I,

which has a lowest cost per minterm covered (i.e., which drives the most minterms to 0

or don't-care) [Ref. 6]. In 1988, Dueck and Miller presented another algorithm that picks

a from M if a has the highest isolated factor (IF) and then finds the I, which directly

covers a such that the break count reduction (BCR) is maximum [Ref. 7, 8].

Each algorithm has some advantages in specific examples [Ref. 9]. The ND algo-

rithm is characterized by adopting the advantage from each algorithm and fully utilizing

the properties of the truncated sum. The ND algorithm is an improvement to the Dueck

and Miller algorithm with revised decision rules for making selections of minterms and

implicants.

3



C. THESIS OUTLINE

A summary of MVL definitions for truncated sLm minimization are introduced in

Chapter II. The notations and definitions of Chapter II also help us in explaining the

algorithms appearing in subsequent chapters. The neighborhood decoupling algorithm

is presented in Chapter III. Chapter IV and V discuss the performance and computa-

tion times of the neighborhood decoupling algorithm with Pomper and Armstrong's and

Dueck and Miller's algorithm for different function parameters.

4



II. NOTATIONS AND DEFINITIONS

Although multiple-valued logic minimization for truncated sum has been discussed

in resent years [Ref. 7, 8, 9, 10, 11], a distinct and complete formal definition for truncated

sum MVL minimization is not available. In view of this, we studied the truncated sum

MVL minimization, then summarized and give several definitions that will be presented

in Section A. It will also help us to explain the algorithm given in the next chapter. We

will report our observations on truncated sum properties in Section B, and the definitions

for ND algorithm will be discussed in Section C.

A. DEFINITIONS FOR TRUNCATED SUM

Definition 1:

Let X = { x1,x 2,... ,x,, } be a set of n input variables where xi takes on values

from 1Z = {0, 1,..., r - 1}. An n-variable r-valued function f is a mapping

f: R' - 7Z {r}. [Ref. 9]

Here, r is a don't - care value; it can be chosen freely from any of the logic values,

0,1,..r- 1.

Definition 2: MIN

The MIN [Ref. 9] function is denoted as f(xI, x 2) = x1 x 2 which evaluates to the

minimum value of its arguments. For example, if 1Z = {0,1,2,3}, then f(1, 2) = 1 and

f(0, 3) = 0. A minterm is an assignment of values to x1 , X2 ,. .. , x, such that f(x) # 0.

5



Definiton 3: Literal

The literal operation of a variable x is defined as:

a b =f r-1 ifa<x<b (2.1)
0 otherwise. [Ref. 11]

Definition 4: Truncated Sum (TSUM)

The truncated sum (TSUM) operation is defined as:

TSUM(x,.x 2 ) = x 1 + x2 = min(xl+ x 2, r- 1). [Ref. 111 (2.2)

The two + signs in this expression are different. The leftmost denotes the TSUM

operation, while the rightmost denotes ordinary add two of logic values which are viewed

as integer. The TSUM obeys the associative and commutative rules. For example, if 7".

= {0,1,2,3}, then TSUM(1,2)=3 and TSUM(2,2)=3.

These definitions are inspired by the fact that CCD implementation supports TSUM

naturally [Ref. 3, 4].

Example 1:

For example, Ix3 is a literal and takes value of 3 when 1 < x, < 3. However,

function 2 xlx takes a value of 2 based on to the definition of MIN. Similarly, the

product term 2 3x3 'x is a function that is 2, when x, = 3 and x2 = 0.

Definition 5: Product Term

A product term p is the MIN of one nonzero constant c E IZ, and one or more

literal functions. In general, a product term is defined as:
p c 1 If7 2 X2 { ik < 3k (2.3)

ik,jkETZ; 1< k<n.

The constant or coefficient c, in a product term, effectively scales the term. For

each variable xi, we say the window size of the literal i'kXijk is jk - k + 1. We use the

terms product term and implicant interchangeably in this thesis.

6



Definiton 6: Sum-of-Products Expression

A sum-of-products expression is p1 + P2 +.. + PN for some integer N, where pi is

a product term.

Definition 7: Minterm

A minterm a is of the form C 11x" 12X12 13X'3 ... ar"xa where a, E 1? and co.istant

c E R- { 0 }. We say the coordinate of a is < a,, a2,... a, >. We denote the value of

minterm a, g(a), as the nonzero constant c.

A product term p = c il x1 j1 i2 X2j2 ... 'x,,j' can be decomposed into I= (jk- ik+1)

minterms. We say p generates those minterms. Given a product term p, the set of

minterms generated from p is denoted by MSp. If the number of elements in MSp, is

greater than that in MSp, we say P, covers a larger area than P2. Given a function f,

the set of minterms generated from its product terms is denoted by MSf.

Definition 8: Saturated Minterms (SAT)

Given a minterm a generated from the original function to be minimized, if g(a) =

r - 1, then a is a saturated minterm. Let SAT be the set of all saturated minterms of a

function.

Example 2:

If the input function to be minimized is expressed as follows,

f = 3 ox3 IXI +2 2IX 20X O+ 3° IXI2X3 +2 2X22 X3 2X2 3X3 + 1 OXO2X2,
1f2 1 2 1 2 1 2+ 1 2 x~1 2 1~

the MSj can be represented as 11 minterms in Figure 2.1. We mark a saturated minterm

with a dot in the figure.

7



Xl
X2 0 1 2 3

0 2 2

1 3) 3. 3.

2 1* 3. 2

3 3. 3.

Figure 2.1: Map for Example 2, 3, 4; Step 1 of Table 3.2

Lemma 1 Given a minterm a the maximum number of implicants which covers a is

O(r2n).

Proof: Consider a variable (axis) xi of a. Any implicant (I,) that covers a may have a

range or "window size" w, such that 1 < w < r. With a window size w, we may have w

implicants that covers a. That is, the minterm a can be at any position of the window.

For a given axis, counting all window sizes, we have 1 + 2 + 3 +... + r = 2 possible"** 2

implicants that cover a. Over the entire n-dimensional space, we have (0(+1))n = O(r 2n)

[Ref. 12].

B. THE PROPERTIES OF TRUNCATED SUM

There are two important properties of the truncated sum which are useful later in

developing the ND algorithm.

1. Saturated minterm can be generated by TSUM operation.
The truncated sum of two or more minterms may produce a saturated

minterm. By definition 4, the truncated sum of any minterm and a sat-

urated minterm remains a saturated minterm. In other words, given two
minterrns a,cP and minterm -t = TSUM(a, P). If value of -f is r - 1, i.e.,
-y is a saturated minterm then for any other minterm 6, ' + b - y.

8



As an example, in a 2-variable 4-valued function, three minterms add

in one position.

2 1 X1 2X2+2 I1 2 X2 + 1 IXI 2X2 = 3 IXI 2 X2 + 1 1 x1 2X = 3 IX 2X2

The first two terms form a saturated minterm, and this saturated minterm

absorbs the third minterm.

2. Don't care minterm can be produced by saturated minterm.

In the minimization procedure, we may update a minterm a to a'

by subtracting minterm 7 (a' = a - -1), where -y is the value of selected

implicant. If a E SAT, in succession of updates, the value of a' may reach

the value 0. In that case, the algorithm will reset that minterm coordinate

to don't-care, i.e., value r.

C. DEFINITIONS USED IN ND ALGORITHM

Definition 9: Direct Neighbors

Let a and 3 be minterms with coordinates < al,a 2,.., a > and < bl, b2,.., b. >

respectively. If for all i we have a. = bi except one position j such that Jaj - bjl 1 we

say that a and 6 are direct neighbors. Given a minterm a, we use N(a) to denote the

set of its direct neighbors.

Observation 1: The maximum number of direct neighbors of a given minterm is 2n.

Definiton 10: Directional Neighbors

Two minterms a and 6 are directional neighbors in the direction xj, if aj = b for

all i E [1, n] such that i # j. When bi > aj we say that 3 is in the positive direction of

a, while when bj < aj we say that # is in the negative direction of a.

9



X1

X2 0 1 2 3

0 1 2
+

1 3. 2* 1

2 1 2 1

3 1 2 2

Figure 2.2: Example for Connected Minterms

Observation 2: If/3 is a direct neighbor of ax then / is a directional neighbor of c in

the direction of xi for some i E [1,n].

Definition 11: Connected Minterms

This is a recursive definition. Given a minterm a and a minterm /, then we say

is a connected minterm of a, if

1. /9 is a direct neighbor of c and either g(p) < g(a) or a E SAT.
2. 8 is a directional neighbor of a in direction xi and O's direct neighbor is

connected to a and either g(o) g(a) or c E SAT.

For example, in Figure 2.2 minterm 2 2x'°x°, 1 3x 3 1 x , 1 2X 2x and 2 2X23x3

(pointed by arrow) are connected minterms of 2 2x2 1xl ('he minterm with @ sign).

Definition 12: Connected Minterm Count

CMC, is the connected minterm count of minterm a. It is the number of minterms

that are connected to minterm a.

Definition 13: Expandable Directional Count

EDC. is the expandable directional count of minterm c. It iq th numbcr of

directions (both positive and negative for each xi) in which a has one or more connected

minterms.

10



X1
X2 0 1 2 3

0 2 _ 2*

1 2. 2. 3. 3.

2 2. 2

3 3. 3.

Figure 2.3: Map for Example 3, 4; Step 2 of Table 3.2

Observation 3: 0 < EDC < 2n.

Definition 14: Clustering Factor

The clustering factor relative to a minterm a is defined as

CF,, = EDC,(r - 1) + CMC,. (2.4)

This is a measure of the weight of all connected minterms relative to a. The (r - 1)

factor is the range, or maximum possible number of minterms, in a direction xi.

Example 3:

In Figure 2.1 the minterm 1 °x° 2xI (the minterm with * sign) has no connected

minterms nor expandable directional neighbors, i.e., its CMC and EDC values are 0.

Figure 2.3 shows that a circled implicant 1 O°X IX2 was subtracted from Figure 2.1. We

mark a minterm with a dot in figure because it was a saturated minterm in original

function map (see Definition 8 and Figure 2.1). The minterm a = 21 x' 0x0 (the minterm

with 0 sign) is one of the ten minterms and CMC, = 3, EDCQ, = 2. The clustering

factors of all minterms in Figure 2.3 are listed in Table 2.1.

11



____TABLE 2.1: CFs for all minterms in Figure 2.3
Minterm 2 1 XI1X2 0 1 ~ 2 I2 2 XOI2 2 1X11I X 2 ' 1_3____2_1X2_

CF 9 { 4 6 18 18
Minterm 3 XI ' 7~ 'X 222 X22X 3 IXII3233I X2 3___

CF 61 13 4 10 10

12



III. NEIGHBORHOOD DECOUPLING
ALGORITHM

The neighborhood decoupling (ND) algorithm [see Appendix A for the C program

listing] is an improvement to Dueck and Miller's method [Ref. 8]. Like the algorithms

mentioned in Chapter I Section B and throughout, the ND algorithm has two compu-

tational phases: select a minterm and select an implicant. Firstly, the most isolated

minterm is chosen by using the algorithm M to be described in Section A. The most iso-

lated minterms in general are different from Dueck and Miller's method due to different

decision rules. Secondly, from all implicants which cover the most isolated minterm ND

algorithm chooses the one that is not strongly "coupled" with its neighbors. In other

words, it is the most isolated implicant. This decoupling process is based on the ob-

servation that if we choose that specific implicant then we may minimize the negative

impact for future minterm selections as well as implicant selections. The explanation of

this idea is described in Section B. In the algorithm below, f denotes the function to be

minimized.

{
SS /- ;/* SS = Solution Set */

WS - MS 1 = {alt is generated by the function f; if a E SAT then mark its

coordinate }.

While WS # 0 do {

1. Use algorithm M (see Section A) to select a minterm a from the WS.

2. Use algorithm N (see Section B) to select an implicant I, that covers a.

3. SS SS U I,.

13



4. V0 E I,, do {

compute g() - g() - g(a).

subtracted 1,. from WS.

if 3 is originally marked and g(o) = 0 then g(O) +- r.

/* don't-care terms */

}

A. ALGORITHM M: MINTERM SELECTION

Based on Definition 15, all minterm's clustering factor can be computed. The ND

algorithm computes the clustering factor in the order of coordinates (x,), i.e., row-column

order. For example, the minterm 2 2_2 0 _ is evaluated earlier than the minterm 2 2x 2x].

The algorithm M is described as follows:

1. Compute the corresponding CF,k for all a, E WS.

2. Select the minterm a that has the smallest clustering factor (excluding the minterm
a E SAT as well as greater than 2 x (r - 1)). If there is a tie, the first one that
gets evaluated is chosen.

B. ALGORITHM N: NEIGHBORHOOD RELATIVE COUNT

The purpose of algorithm N is to choose the most "isolated" implicant (I,,) and

update the working set WS. It computes the neighborhood relative count (NRC) for all

implicants that cover the minterm a. The implicant with the smallest NRC is chosen. In

other words, NRC is a measure of the coupling strength of an implicant with its neigh-

bors. To select an implicant which is equivalent to breaking the coupling between that

implicant with its neighbors, the candidate implicant should have the smallest coupling

strength with its neighbors. Therefore, the ND algorithm tends to choose the most "iso-

lated" implicant. If there is a tie in selecting the I, ND algorithm chooses the one which

14



covers the largest area. The computation of NRC for a given implicant is described as

follows:

1. Initialize the NRC to zero.

2. Check all neighboring minterms of the implicant and increment or decrement its
NRC according to the following (intuitively stated) rule, which is, if the coupling
strength between covered and uncovered area is weak (good for further decoupling),
algorithm N decreases NRC, otherwise increases NRC.

a: the chosen minterm from algorithm l.

M: the set of minterms which was covered (generated) by the chosen impli-

cant (I.).

N(3): the set of direct neighbors of minterm/3.

{

NRC +- 0;

V3 E M and/3 a do{

if(g(/3) - g(a) < 0) then NRC +- NRC - 2;

}

V3 E M and Vy E N(3) do {

if (-y M and -f 5 0 and (-y € SAT or,3 V SAT)) then {

if (g(,3) - g(a) > g(y) ) then {
if (-Y E SAT ) then NRC -- NRC - 1;

else NRC -- NRC + 2;

if (g(#) - g(a) < g(7) ) then {

if (g(/3) = g() ) then NRC .- NRC + 2;
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if (-y E SAT and g('y) - g(!) < 0 ) then

NRC -NRC + 2;

else {

if (g(O) > g(a) and g(/3 ) # g(-y) ) then {

if( 3 E SAT) then NRC +- NRC - 1;

else NRC *- NRC + 2;

} /* end if*/

}/* end else */

} /* end if */

if (g(I3) - g(a) = g(-y) ) then {

if (g(-() > 0 or 3 E SAT) then

NRC +-NRC - 1;

else NRC - NRC - 2;

}
} /*end if */

}

if (M = {a}) then {

if (a E SAT) then NRC +- 2;

else if (NRC < 0) then NRC 1;

}

else NRC *-- NRC + 2;
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X1
X2 0 1 2 3

0

1 2. 4. 1. 3.

2 4.

3 i .:D

Figure 3.1: Map for Example 4; Step 3 of Table 3.2

Example 4:

It is instructive to examine an example of the application of the ND algorithm.

We use a two-variable four-valued function as an example. The input function to be

minimized is expressed as:

f = 3 1x 2+2 1 12 + 3  12+2 1 2+ 1 2x

The working set, WS, is initialized to MS 1 and is represented in Figure 2.1. The clus-

tering factors of all minterms in WS are calculated (see example 3 for computation).

The smallest CF that first comes from minterm 1 1 2 ; therefore, algorithm M will

select a = 1 x° 2X4. The ND algorithm computes the NRCI for each implicant I which

covers a using algorithm N. Since implicant 1 °04 1X4 has the smallest NRC(-2), the

ND algorithm selects it as the first implicant in the solution set (SS). 'Fable 3.2, together

with Figures 2.3, 3.1, and 3.2 shows the steps of choosing successive implicants. The

* sign in each figure indicates the most isolated minterm while a circled implicant is

the most isolated implicant. Suppose we have chosen two implicants from the function

shown in Figure 2.1 the resulting function is shown in Figure 3.1. The minterm 1 2x 2 3 X

is selected, since it has the smallest CF(4).
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X1
X2 0 1 2 3

0

1Qj4. 1.I3.
2 4.

3 4. 4.

Figure 3.2: Map for Example 4; Step 4 of Table 3.2

TABLE 3.1: NRCs for Minterm 2 °x lx in Figure 3.2
Implicant 2 ox 1

0 x 2 1 1 2 0°X11 1X2 2 0X1
2 1x2

1  3 oX1
3 1x 2I

NRC 2 0 -2 -4

There are two implicants that cover the minterm 1 2X23X3, and their NRC values

are 2 and -2. The implicant 1 1  3X3 is chosen since it has the smallest NRC(-2).

Having updated the working set and added 1 X1 3X3 to the solution set, we have the

new map in Figure 3.2. From Figure 3.2, the NRC values for the minterm 2 x 1xl are

available in Table 3.1. Finally, the working set should contain value 0 (empty square) or

4 (don't-care) as shown in Figure 3.3.

x1
X2 0 1 2 3

0

1 4. 4.

24.

3 4. 4.

Figure 3.3: Final Working Set
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TABLE 3.2: Steps of ND algorithm
Step Minimum Minterm a Minimum Candidate Implicant Reference

C F, N RC

1 0 2 °x1
0 2x 2

2  -2 2 °X1 1 1 x2
2  Figure 2.1

2 4 1 2X 1 2 Ox2 0 -8 1 1X1
2 0X 2 3 Figure 2.3

3 4 1 2 X1 23X23 -2 1 X23X2 Figure 3.1

4 6 2°x1
0 X 2

1  -4 3 °x 1
3 1x 2

1  Figure 3.2

The final minimized result, g, is expressed as:

9 = 2 °O X1X 2 + - 1 'X2°X3 +- 11X23X3 + 3 3 x3 I2.
1=2 1 2 1 2 121
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IV. COMPARISON RESULTS

In this thesis all testing results were obtained by running sample functions on the

VAX 11/785 and ISI workstations. A large number of sample functions were randomly

generated (63,500). We applied each algorithm to minimize these sample functions in

a way similar to the method used by Tirumalai and Butler [Ref. 9], and Yurchak and

Butler [Ref. 101. However, Tirumalai and Butler generated the input functions with

a fixed number of minterms. We generated the input function with a fixed number of

product terms. This thesis investigated three algorithms: (1) Pomper and Armstrong

[Ref. 51, (2) Dueck and Miller [Ref. 7, 8, 10], and (3) Neighborhood Decoupling under

various settings:

1. Two-variable four-valued with 3 to 16 input product terms.

2. Two-variable five-valued with 3 to 25 input product terms.

3. Three-variable four-valued with 3 to 45 input product terms.

4. Four-variable four-valued with 3 to 35 input product terms.

For two-variable four-valued functions, we generated 1000 sample functions for a

given number of input product terms from 3 to 16, i.e., we generated 14,000 functions

to test the different algorithms. For the other three, we generated 500 functions for each

given number of input product terms, i.e., for each set we generated 11,500, 21,500, and

16,500 functions respectively.

In Section B, functions with a different number of product terms are tested and the

computation times are recorded. For a given number of product terms, the computation

time from two to four variable functions grows exponentally. This explains why we did

not produce more than 1000 functions for each case.

20



A. PERFORMANCE COMPARISON

There are two ways to measure the performance. First, the average number of

output product terms will show us the advantage of each algorithm. Second, the ratio

of the performance results will show us the performance increases or decreases for each

algorithm under different conditions.

1. AVERAGE NUMBER OF OUTPUT PRODUCT TERMS

For each set, we compute the average number of output product terms (see Ap-

pendix B). From these data points, we can plot a curve, indicating the average number

of output product terms as a function of input product terms. The plots for the various

sets are shown in Figures 4.1, 4.2, 4.3, and 4.4. In these bell-shaped figures we observed

three important features:

1. The differences in the number of average output product terms among those algo-
rithms are insignificant, when the input number of product terms are small. When
the number of input product terms is small, the function is simple and easy to
minimized; therefore, the number of output product terms for each algorithm are
almost same.

2. The highest point of each bell-shaped curve is the highest average number of output
product terms for each algorithm. The number of input product terms that has the
highest average number of output product terms constitutes the most complicated
functions.

3. When the number of input product terms get larger, the curve goes down gradually.
This is chiefly due to the fact that the more input product terms in a function the
higher tendency of generating saturated minterms. In most cases, a single implicant
can cover a cluster of saturated minterms.

From Figures 4.1, 4.2, 4.3, and 4.4, the neighborhood decoupling algorithm obvi-

ously outperforms the other two algorithms.

21



4.4 1 1 1 1

4 .2 ............................

4-'U 4

3.8

3.6
0
0 3.4-

S32Pomper & Armstrong .......S3.2-

z 3Dueck & Miller ___
3 -

S2.8- Neighborhood Decoupling -----
S2.862

2.64 6 8 10 12 14 16

Number of Input Product Terms
Figure 4.1: Two-Variable Four-Valued Average Product Term

5.5 ... -.

0.5

4.5

0
t4.4

0 4-
Pomper & Armstrong .......

3. Dueck & Miller___

3- Neighborhood Decoupling -----

2.5o 5 10 15 20 25

Number of Input Product Terms
Figure 4.2: Two-Variable Five-Valued Average Product Term

22



.. ........ - '..

* 10

9

0
8

7
0

6- Pomper & Armstrong .......0 6-

58 Dueck & Miller5 ",-

Z Neighborhood Decoupling --------
4

3

0 5 10 15 20 25 30 35 40 45

Number of Input Product Terms
Figure 4.3: Three-Variable Four-Valued Average Product Term

30 30 .......

.. 2 .. ............... -- - - - -

UH 25 -

0 20

o 15

00

Z Dueck & Miller

z
V 5 Neighborhood Decoupling ----------

0 5 10 15 20 25 30 35

Number of Input Product Terms
Figure 4.4: Four-Variable Four-Valued Average Product Term

23



TABLE 4.1: Test Results of 14000 2-Variable 4-Valued Sample Functions
Performance Pomper and Armstrong Dueck and Miller Neighborhood Decoupling

best 54 212 336
better 479 2005 2308
equal 11002 11002 11002
total 11535 13219 13646

ratio 0.8239 0.9442 0.9747

2. PERFORMANCE RATIOS

We consider another measure, the performance ratio, to demonstrate the perfor-

mance of each algorithm. First, for each algorithm, we count the number of minimized

functions that specify which algorithm is the "best" of the three, i.e., the number of in-

stances that a specific algorithm uses the minimum number of implicants (output product

terms). If two algorithms use an equal number of implicants and less than the other one,

we determine that they are "better" than the third one. When all three algorithms use an

equal number of implicants to minimize a function, we determine that they are "equal".

The performance ratio is defined as

71 = (lNbeat + Nbetter + Nequal) - Ntota,, (4.1)

where Nbest, Nbetter, and Nqui are the number of instances that specific algorithm per-

forms "best", "better", and "equal" respectively.

The total number of functions tested, Ntotdl in our case is 14,000, 11,500, 21,500,

or 16,500. Tables 4.1, 4.2, 4.3, and 4.4 show the performance ratios for each setting.

For example, in Table 4.1, with 14,000 functions tested, we counted the cases which

Neighborhood Decoupling algorithm performs no worse than the others as 13,646. That

is, T1NZ = 13646/14000 = 0.9747. Tables 4.1, 4.2, 4.3, and 4.4 show that the performance

is degraded when n or r i-. increased. However, the neighborhood decoupling algorithm

obviously outperforms the others.
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TABLE 4.2: Test Results of 11500 2-Variable 5-Valued Sample Functions
Performance Pomper and Armstrong Dueck and Miller Neighborhood Decoupling

best 114 356 1248
better 762 1993 2509
equal 7150 7150 7150
total 8026 9499 10907
ratio 0.6979 0.8260 0.9484

TABLE 4.3: Test Results of 21500 3-Variable 4-Valued Sample Functions
Performance Pomper and Armstrong Dueck and Miller Neighborhood Decoupling

best 948 1595 4578
better 2791 4307 5918
equal 7871 7871 7871
total 11610 13773 18367
ratio 0.5400 0.6406 0.8543

TABLE 4.4: Test Results of 16500 4-Variable 4-Valued Sample Functions
Performance Pomper and Armstrong Dueck and Miller Neighborhood Decoupling

best 1604 3077 4952
better 1420 3106 3440
equal 2884 2884 2884
total 5908 9067 11276
ratio 0.3581 0.5495 0.6834
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B. TIMING COMPARISON

HAMLET CAD (Computer Aided Design) tool has an option that can measire

program's computation time. In this section, the algorithm timing comparison counts the

average computation time for each input product term minimization. These measures

are collected on the ISI workstations at NPS. The theoretical worst case computional

complexity of each algorithm is O(r 2") (see Chapter II). The decision rules for selecting

minterm a and implicant I,,, in each algorithm are different. In general, an algorithm

which needs more or complex decision rules in selecting a and I, should take longer

computation time. There may be a trade-off between performance and computing time.

In each computation cycle (select a mninterm and select an implicant), each algorithm

generates an output product term. The ND algorithm uses more complex decision rules

than Dueck and Miller's. It may appear that ND algorithm should use more computation

times. However, this is not true, since ND algorithm in general has less computation cycle

than other algorithms so that it stop computation earlier than other algorithms. From

the analysis of testing case results (see Appendix C), the average computation time of

the ND algorithm is no worse than Dueck and Miller's for more than 4 second, sometimes

even better.
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V. DISCUSSIONS AND CONCLUSIONS

A. DISCUSSIONS

Notice that in the comparisons we did not include the Bessilich's algorithm and the

absolute minimum solutions. We now justify the reasons. Besslich's algorithm was not

included in HAMLET because it requires a truth table to operate efficiently. We did not

have room to store large truth tables. Also Besslich's algorithm is likely to require much

time [Ref. 101. In addition, we know that the Dueck and Miller is a satisfactory [Ref. 9,

10] heuristic which is reasvnable approximation to the absolute minimum solutions for

two-variable four-valued functions.

The performance results show that the ND algorithm outperforms the other two

algorithms. Although Pomper and Armstrong's algorithm is faster than the other two

algorithms, about one third of the computation time, the number of average output

product terms and p(crformance ratios are worse than the other two algorithm's. From

the timing comparison results, the ND algorithm runs faster than Dueck and Miller's in

larger variable setting conditions (more than two variable). This time efficiency is due

to the decision rules employed in the ND algorithm which take advantage of the special

property of truncated sum operations. In other words, the input product terms have a

tendency to produce saturated minterms. In the decoupling process (algorithm N), a

minterm in SAT will always qualify to combine with its neighbors to form an implicant.

Although the ND algorithm conceptually is similar to Ducck and Miller's algorithm, the

ND algorithm uses saturated minterms in an more effective way. For example, when

we update (deduct) saturated minterm from expression, the minterm will be updated to

a "don't-care minterm" (see Chapter III). Like binary logic minimization, a "don't-care
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minterm" [Ref. 13] can simplify the minimization process.

Recall that in algorithm N, we compute the NRC values for a given minterm a by

examining the relationships of I, and its immediate neighbors, i.e., one step look-ahead.

It is natural to believe that with more steps look-ahead we might make a better choice

of the implicant and therefore provide a better solution. The exponential growth of the

number of possible implicants restricts the practical use of k-lookahead for k 5 1.

B. CONCLUSION

The truncated sum MVL minimization can be done by the neighborhood decou-

pling algorithm which selects the most isolated minterms as well as implicants. In the

development of ND algorithm, we have the following observations: (1) truncated sum

operations may produce saturated minterms, and (2) a satulrated minterm will reduce to

a don't-care minterm in the minimization process. The decision rules of the ND algorithm

take full advantage of these observations. The ND algorithm outperforms most heuristic

methods and does not lose its run time efficiency because the algorithm finds the solution.

and stops earlier than others. As the number of variable of the input function become

larger, i.e., greater than three, the ability to minimize the function in reasonable time is

an important and challenging research area.
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APPENDIX A: PROGRAM LISTINGS

/* nd.c

- This module implements the Neighborhood Decoupling heuristic for

MVL minimization.

- This program can be added to HAMLET [Ref. 10].

- HAMLET is written by the instructor J. Yurchak in the Department
of Computer Scinece at Naval Postgratuate School.

*/

#include "defs.h"

static int

better-found;

/* Neighborhood Decoupling functions --------------------------------- *

:function:
- Perform the Neighborhood Decoupling heuristic on the input expression

:algorithm:
Start with a working copy E.work of the original function Eorig;
Initialize a final function E.final;
While (there are still minterms to pick) {

Pick a minterm X from E.work;
Pick the best implicant I for X;
Add I to E.final;
Subtract I from E-work;

}
:globals:

E.orig
e-flag
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m-.f lag
q-f lag

Gflag
FO-.rat jo

side..effects:
STAT
HEUR
E..vork
E-.finalO0

called-.by:
main()

calls:
dealloc-.expr()
dup..exproC
print-.termsoC
print ..mapoC
MiM()
pick-.implicant()
subtract-implicantoC
print-source C)

{ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

imt numjimpl = 0;
int *X;
Implicant *I;

float ratio;

if (E-.final(NDJ.I != NULL)
dealloc..expr(kE-final END));

#ifdef ANALYZER
STAT = kWYstat;

#endif

HEUR =ND;
dup-.expr(HE.vork,&E..orig);
E-finalEHEUR) .nterm a 0;
E-.finalHEURJ.radix a E-.orig.radix;
E..final(HEURJ.rivar aE..orig.nvar;
E-.final[HEUR].I a NULL;

#ifdef ANALYZER
if (e..f lag)

print-.torms(kE-.orig);
if (m..f lag){
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printf(" Orig map (nda):\n");
print-.mapo;

*endif

better-.found = Sc-.f lag;

resource-.used(START);

for (;;) (
if ((X = mimC&E..vork)) == NULL){
if (num-.impl < E-.orig.nterm)
better-found =1;
break;
I
I = pick-.implicant(X);
num..impl++;
subtract..implicant (I);

#ifdef ANALYZER
if Ci..flag)
print-.implicantCX,I);
if (m-.f lag)
print..rapo;

*endif
if CSm-.f lag){

if (rium-.impl >= E-.orig.ntern)
break;

resource-.used(STOP);

if CObetter-.found) (
num-impl = E..orig.nterm;
dup-e.xprC&CE..final END]) ,&E-.orig);

#ifdef ANALYZER
if (!q.f lag kk !G-.f lag){

if CObetter..found)
printf("I %-4d nda: %4d /%-4d %6ld.%2.2ld\n\n",

*xpr-sebq,nuumjimpl~num-impl,sec..usedo),tsecs-.usedo);
else

printf(I" %-4d nda: %4d /%-4d %6d.Y.2.21d\n\n",
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expr..seq,num.impl ,E-.orig .nterm,
secs-.usedo),tsecs.usedo);

*endif

dealloc-.expr(&E..ork);

static in *mim(E)
Expression *E;
/* ----------------------------------------------------------------
function:

-Compute the clustering factor and find the Most Isolated Minterm
in the expression pointed to by E, and return its coordinates as
a vector.

-Local to nd.c
:globals:

radix
nvar

side-.effects:
STAT

:called-.by:
N..DO(

calls:
next-.coord()
eval C)
vcopy()

returns:
-A vector of integers representing the coordinate of the most
isolated minterm, or NULL if no more minterms.

-The value at that location is also returned as the last integer
in the vector.

register ij,k;
int cur.val = E->radix,

cur..CF - NAX_.INT,
X-orig ENAXVAR+2),
R-1 - radix - 1,
Not-.all *0,

All-.trun -0,

TRUN - 2*RJ,
last - 0,
expanded,
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value [2]
val 1 2],
val2 [2],

ea,
dea,
term;

int *X,*next-.coordo;
static int

coord EMAX-VAR+2],
save-coord [MAX-VAR.2];

*ifdef ANALYZER
STAT->calls.mim++;

*endif

f or (term=O; term < E..orig.nterm; term++){
k = 1;
while ((X=next-.coord(coord,&(E->I[term]),k)) !NULL) f

vcopy(value,eval(E,X));
if (value [EVAL) kk value [EVAL) < radix){

if (!value[HLVI)
Not-.all a1;
if (Ailltrun){

cf a0;
dea =0;
ea = 0;
for (j0; j < nvar; j++) X-.orig~j] =X~j];

/* for each variable (direction) ... *
for (j=O; j < nvar; j++){

expanded a 0;
/* If not on a left hand edge, move left *

while (X[j) > 0){
X~jJ--;
vcopy(va1l,eval(E,X));
if (vall[EVAL]) f

expanded a 1;

ea+

else
break;

X~jJ m X..orig[j];
if (expanded) (

expanded - 0;
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dea++;
}

/* if we didn't start on a right hand edge, move right *f
while (X[j] < R-i) {

x[j+ +;
vcopy(val2,eval(E,X));

if (val2[EVAL]) {
expanded = 1;
ea++;

}
else

break;

X[j] = X-orig[j];
if (expanded)

dea++;
}

/* compute the clustering factor */
cf = (dea * R-1) + ea;
if (cf < curCF) {

cur.val a value[EVAL];
curCF = cf;
for (i=O; i < nvar; i++) save-coord[i] = X[i];

}
}
else {

cf = 0;
dea = 0;
ea = 0;
for (j=O; j < nvar; j++) Xorig[j] = X[j];

/* for each variable (direction)...
for (j=O; j < nvar; j+ ) {

expanded = 0;
/* If not on a left hand edge, move left */

while (X[j] > 0) {
x1j)--;
vcopy(val1,eval(E,X));
if (vall[EVAL] && (vall[EVAL] <= value[EVAL]

I I value [HLV)) {
expanded = 1;
eat ;

}
else
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break;
}

XEj] = XorigEj];
if (expanded) {

expanded = 0;
dea++;

}
/* if we didn't start on a right hand edge, move right */

while (XEj] < R-1) {
X~j]++;

vcopy(val2,eval(E,X));

if (val2[EVAL] && (val2[EVAL] <= value[EVAL]
II value [HLV])) {
expanded = 1;
ea+ ;

}
else

break;
}
XEj] = X-orig[j];
if (expanded)

dea++;
}

/* compute the clustering factor */
cf - (dea * R-1) + ea;

if (!(valueH.LV] kk cf > TRUN)) {
if (cf < curCF) {

curval = valueEEVAL];
curCF = cf;

for (i-0; i < nvar; i++) save-coord[i] =Xi];
}

}
}

} I*end if*/

k =0;
/* end while */

if (!last Ut (term == (E-orig.nterm- 1)) kk !Not-all) {
All-trun = 1;
cur.CF = MAX.INT;
term a -1;
last z 1;

}
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if (cur..F ==MAX.INT)
return(NUL-L);
save..coord~nvar+1] = cur-.CF;
save-.coord~nvarl = cur-.val;

return(save-.coord);

static imt valid-implicant(I)
Implicant *I;

:function:
- Decide upon the validity of implicant I
- Local to nd.c

:globals:
E..vork
E-.orig

side-.effects:
STAT

:called-.by:
pick-implicant 0

calls:
next..coordo)
eval()
vcopy0)

returns:
1 if a valid implicant
0 if not

------------------------------------------------------------- *

int

R- radix - 1,

value - I->coeff,
Vo[2 ,lVw[2];

static int
coordCNAX-VAR+22;

#ifdef ANALYZER
STAT->callu..valid..implicante'*;

#endif
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while ((X = next-.coord(coord,I,init)) != NULL){
init =0;
vcopy (Vw ,eval (&E..work, X));
vcopy (Vo,eval (&E..orig, X));
if (((VwCEVAL) < value) &U !Vw[HLV)) && (Vo[EVAL] < R-1))
return(O);

return(1);

static int compute-.nrc(I)
Implicant *I;
/* ----------------------------------------------------------------
function:

- Compute the NRC f or the given implicant
- Local to nd.c

globals:
radix
nvar

side-.effects:
STAT

:called-by:
pick..implicantoC

calls:
next-.coord()
evalO)
vcopy()

returns:
- an integer NRC

int I-.value = I->coeff;
register i;
int value E2),

R_ radix - 1,
neighbor.value E2),
good,
bad,
diff,
equal,
neig-.boun,
first,
arc = 0,
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init = 1;
static int

coord [MAX-VAR+2];

tifdef ANALYZER
STAT->calls-compute-.nrc++;

#endif

/* for each coordinate in the implicant ... *
whi.le ((X = next..coord(coordI,init)) != NULL) f

init =0;
equal 0;
vcopy vlu,eval (&E-..ork,X));
if (value[EVAL) = radix)

continue;
diff =value [EVAL) - I-.value;
first 1;

/* for each direction ...

for (i0O; i < nvar; i++){
good -0;

bad =0;

if ((diff <= 0) && first){
good -2;
first =0;

/* if there is a left neighbor, examine it *
if (X~i) != 0 && X~iJ == I->B~i).lower){

XliJ--;
vcopytneighbor-.value ,eval (kE..vork ,X)
neig-.boun = neighbor..value[EVAL) - value[EVAL];
X [i] +;
if (neighbor-.value[EVAL] != 0) f

if (!neighbor-.valueEHLV) 11 !value[HLV]) f
if (neighbor.value[EVAL) < diff) f

if (neighbor-.value EHLV])
good += 1;

else
bad +- 2;

if Cneighbor.valueEVALJ > Jiff) f
if (!neig.boun)

bad += 2;
if (neighbor-value[HLV) && neig..boun < 0)

bad +'- 2;

if (diff > 0 && neig-.boun){
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if (value [HLV])
good += 1;

else
bad 4= 2;

else{
if (neighbor-.value EHLVJ I I value EHLV])

good *= 1;
else

good += 2;

}/* end if *

/* if there is a right neighbor, examine it *
if (X~i] != R-I && X~i) == I->B~i].upper){

X [i] ++;
vcopy (neighbor-.value ,eval (&E..work ,X)
neig-.boun - neighbor..value LEVAL] - value [EVAL];

if (neighbor-.value[EVAL) != 0){
if (!neighbor-.valueEHLV) 11 !value[HLV]) f

if (neighbor-.value[EVAL] < diff) f
if (neighbor-.value [HLV])

good += 1;
else

bad += 2;

if (neighbor-.value[EVAL] > diff) f
if (!neig-.boun)

bad 4= 2;
if (neighbor-valueEHLV] && neig-.boun < 0)

bad 4= 2;
if (diff > 0 kk neig..boun){

if (value EHLV])
good 4= 1;

else
bad 4. 2;

else{
if (neighbor-valueHLV] 11I value EHLV])

good 4= 1;
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else
good += 2;

/* update the nrc *
nrc = (nrc -good) + bad;

}/* end for *
} * end while *

return(nrc);

static Implicant *pick-.implicant CX)
int *X;

:function:
- Pick the best implicant for minterm X

:globals:
radix

side-.effects:
STAT

:called-.by:
N-.D()

calls:
init-.implicantoC
gen-.boundsoC
next-.implicantoC
eval()
vcopy C)
compue.nrcoC
copy-implicant()
validjanplicant()

:returns:
_ A pointer to a term representing the best implicant.

int cur-.nrc - MAX-.INT,
nrc a 0,
I-.value,

first -1;
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Impi icant
*I;

static int
coord[MAX-VAR+2);

static Bound
* I-.bound[MAX-VAR+2];

static Implicant
I-.best;

Bound *B;
int VC2J,

value [2];

*ifdef ANALYZER
STAT->calls-.pick-implicant4+;

*endif

I-.best.B = I-.bound;
init-implicant(X);
B = gen..bounds(X);
vcopy(V,eval(&E-.orig,X));
while ((I =next-.implicant(B)) != NULL){

if (VEHLV)) f
for (I->coeff=X~nvar]; I->coeff < radix; (I->coeff)++){

if (valid-implicant(I)) {
nrc - compute-.nrc(I);
if (first)

nrc = 2;
else

nrc += 2;
if (nrc <= cur-.nrc){

cur-.nrc nrc;
I->nrc =nrc;
copy-implicant (&I-.best .1);

first *0;

else{
I->coeff m X[nvarJ;
if (valid-implicant(I)){

nrc - compute-.nrc(l);
if (first) (

first a 0;
if (nrc < 0)
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nrc =1

else
nrc += 2;

else
nrc 4= 2;
if (nrc <= cur-.nrc){

cur..nrc nrc;
I->nxrc =nrc;

copy-implicant (&I-.best .1);

return(&I-.best);
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APPENDIX B: AVERAGE NUMBER OF
OUTPUT PRODUCT TERMS

TABLE B.1: Two-Variable Four-Valued Average Output Product Terms
Number of Pomper and Armstrong Dueck and Miller Neighborhood

Input Terms Decoupling
3 2.838 2.716 2.709
4 3.483 3.290 3.277
5 3.916 3.710 3.675
6 4.178 3.959 3.934
7 4.203 4.023 3.977
8 4.201 4.009 3.950
9 4.072 3.920 3.872
10 3.913 3.763 3.699
11 3.717 3.583 3.534
12 3.573 3.438 3.398
13 3.355 3.233 3.207
14 3.178 3.079 3.042
15 2.991 2.899 2.877
16 2.759 2.696 2.658
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TABLE B.2: Two-Variable Five-Valued Average Output Product Terms
Number of Pomper and Armstrong Dueck and Miller Neighborhood

Input Terms Decoupling
3 3.122 2.858 2.832
4 4.044 3.718 3.684
5 4.660 4.296 4.236
6 5.222 4.868 4.760
7 5.540 5.138 5.040
8 5.740 5.428 5.258
9 5.832 5.548 5.360
10 5.948 5.566 5.420
11 5.814 5.530 5.372
12 5.762 5.524 5.306
13 5.486 5.246 5.062
14 5.364 5.198 4.894
15 5.014 4.858 4.622
16 4.780 4.668 4.376
17 4.484 4.360 4.172
18 4.250 4.184 4.016
19 4.032 3.942 3.762
20 3.822 3.766 3.600
21 3.730 3.676 3.504
22 3.564 3.482 3.362
23 3.224 3.152 3.032
24 3.044 2.998 2.902
25 2.982 2.944 2.840
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TABLE B.3: Three-Variable Four-Valued Average Output Product Terms
Number of Pomper and Armstrong Dueck and Miller Neighborhood

Input Terms Decoupling

3 3.026 2.940 2.928
4 4.090 3.892 3.862
5 5.162 4.834 4.840
6 6.168 5.756 5.718
7 7.186 6.578 6.492
8 7.916 7.372 7.238
9 8.466 7.852 7.762
10 9.02 8.570 8.324
11 9.646 9.068 8.814
12 10.056 9.578 9.266
13 10.426 9.918 9.608
14 10.588 10.126 9.772
15 10.730 10.280 9.958
16 10.668 10.330 9.938
17 10.676 10.450 10.012
18 10.866 10.634 10.124
19 10.628 10.482 9.870
20 10.586 10.358 9.796
21 10.508 10.390 9.804
22 10.280 10.240 9.586
23 10.164 9.990 9.364
24 9.726 9.628 8.990
25 9.448 9.426 8.806
26 9.142 9.098 8.492
27 8.896 8.948 8.244
28 8.706 8.756 8.098
29 8.820 8.834 8.202
30 8.648 8.746 7.976
31 8.592 9.688 7.968
32 8.104 8.154 7.544
33 8.022 8.070 7.444
34 7.646 7.766 7.188
35 7.160 7.174 6.684
36 7.076 7.186 6.676
37 6.888 6.994 6.388
38 6.632 6.642 6.132
39 6.492 6.528 6.036
40 6.406 6.350 5.926
41 6.128 6.214 5.750
42 5.878 5.864 5.502
43 5.570 5.664 5.224
44 5.270 5.286 4.940
45 5.302 47 5.340 4.960



TABLE B.4: Four-Variable Four-Valued Average Output Product Terms
Number of Pomper and Armstrong Dueck and Miller Neighborhood

Input Terms Decoupling
3 3.136 3.018 3.002
4 4.252 4.026 3.974
5 5.248 5.028 4.978
6 6.546 6.070 6.018
7 7.690 7.168 7.954
8 8.786 8.178 8.066
9 9.988 9.172 8.970
10 11.172 10.246 10.014
11 12.354 11.330 10.960
12 13.600 12.374 12.074
13 14.676 13.502 13.066
14 16.096 14.512 14.144
15 16.954 15.366 15.056
16 18.028 16.348 16.230
17 19.144 17.570 17.036
18 20.050 18.648 17.866
19 21.072 19.460 18.862
20 21.930 20.590 19.850
21 23.074 21.396 20.576
22 23.682 22.258 21.456
23 24.456 22.910 21.954
24 25.258 23.590 22.770
25 25.528 24.552 23.220
26 25.740 24.788 23.654
27 26.656 25.412 24.374
28 26.940 26.190 24.950
29 27.786 26.668 25.410
30 27.672 26.612 25.454
31 28.032 27.246 25.854
32 28.458 27.550 26.318
33 28.368 27.840 26.454
34 28.768 27.934 26.344
35 28.752 28.170 26.498
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APPENDIX C: AVERAGE COMPUTATION
TIME FOR MVL MINIMIZATION

TABLE C.A: Two-Variable Four-Valued Average Computation Time
Number of Pomper and Armstrong Dueck and Miller Neighborhood

Input Terms Decoupling
3 0.03309 0.06156 0.06336
4 0.05517 0.10724 0.11221
5 0.08384 0.16931 0.17947
6 0.11167 0.23128 0.24318
7 0.14140 0.29612 0.31576
8 0.1k "a 0.37093 0.38907
9 0.19713 0.43512 0.46649

10 0.22143 0.48732 0.52141
11 0.24440 0.55478 0.59490
12 0.27069 0.61506 0.65662
13 0.28888 0.66258 0.71877
14 0.31570 0.71373 0.77805
15 0.33116 0.76289 0.82645
16 0.34269 0.79065 0.85818
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TABLE C.2: Two-Variable Five-Valued Average Computation Time
Number of Pomper and Armstrong Dueck and Miller Neighborhood

Input Terms Decoupling
3 0.05604 0.10954 0.11110
4 0.09554 0.20432 0.20372
5 0.15442 0.33730 0.33034
6 0.22760 0.50900 0.50168
7 0.29088 0.67988 0.66278
8 0.36180 0.86232 0.84642
9 0.42612 1.08536 1.05530
10 0.50258 1.24780 1.23926
11 0.57016 1.44212 1.41004
12 0.62940 1.64508 1.60892
13 0.70374 1.83080 1.79734
14 0.76936 2.07240 1.98956
15 0.84158 2.23954 2.14072
16 0.88608 2.36738 2.27968
17 0.93786 2.50298 2.45116
18 0.99650 2.63846 2.62578
19 1.03754 2.72054 2.74588
20 1.07786 2.84114 2.86624
21 1.13426 2.94840 2.98710
22 1.15298 2.99784 3.08048
23 1.18984 3.04716 3.10488
24 1.23294 3.10796 3.25222
25 1.24788 3.24612 3.37128

50



TABLE C.3: Three-Variable Four-Valued Average Computation Time

Number of Pomper and Armstrong Dueck and Miller Neighborhood

Input Terms Decoupling

3 0.11096 0.25190 0.23496

4 0.17684 0.41760 0.39676

5 0.29150 0.67308 0.66464

6 0.43990 1.04038 1.02516

7 0.65294 1.49640 1.47802

8 0.86260 2.09008 2.07168

9 1.07620 2.61164 2.59776

10 1.36058 3.29064 3.24702

11 1.63312 3.97860 3.93274

12 1.97194 4.71946 4.73014

13 2.24472 5.53536 5.50418

14 2.61166 6.50490 6.37408

15 3.00044 7.56094 7.31712

16 3.40472 8.50130 8.33298

17 3.80686 9.56092 9.21312

18 4.22300 10.6681 10.1814

19 4.62690 11.9961 11.2720

20 5.10534 12.9534 12.0204

21 5.51390 14.0393 3.1130

22 5.91520 15.2872 1.0559

23 6.35928 16.1587 5.1375

24 6.69882 17.5192 15.9774

25 7.17424 18.2629 17.0413

26 7.60032 19.5004 17.6663

27 7.77850 20.4014 18.4309

28 8.32284 21.5390 19.5850

29 8.95526 22.5366 20.7064

30 9.04034 23.3790 21.0932

31 9.11648 24.1279 21.9608

32 9.48198 24.2701 22.3971

33 9.88210 25.3621 23.1439

34 10.1734 26.4659 24.2141

35 10.3463 26.5370 24.3088

36 10.8508 27.1308 25.6463

37 11.0079 28.1984 25.9083

38 11.2138 28.6137 25.8980

39 11.5521 29.2124 27.1013
40 11.7711 30.3718 28.0957

41 11.8719 30.1055 28.1734

42 12.4192 30.7879 29.1146

43 12.5431 31.1774 29.4338

44 12.3511 30.4067 29.0054

45 12.6780 51 31.7510 30.1296



TABLE C.4: Four-Variable Four-Valued Average Computation Time
Number of Pomper and Armstrong Dueck and Miller Neighborhood

Input Terms Decoupling
3 0.35778 1.01774 0.79966
4 0.57068 1.64304 1.33264
5 0.89762 2.74510 2.17928
6 1.26432 3.97440 3.24550
7 1.69976 5.14632 4.58174
8 2.52112 7.31790 6.54000
9 3.25296 9.42768 8.51408
10 4.23814 12.6106 11.3127
11 5.21906 15.5529 13.8771
12 6.31822 18.5009 17.0987
13 7.86472 22.1662 20.9875
14 9.35484 25.1544 24.6584
15 10.9688 29.2464 29.0192
16 13.0702 34.6918 34.6770
17 15.9150 39.5156 40.0190
18 17.5832 45.6882 46.5026
19 20.8329 52.2132 54.0485
20 22.9053 58.4218 59.8628
21 26.1380 65.7590 67.4621
22 30.5844 74.2779 76.7863
23 34.5081 82.4673 86.0243
24 39.0754 92.3658 94.9414
25 42.8344 104.355 100.501
26 47.3552 111.323 106.223
27 53.0040 118.979 113.879
28 57.5171 125.230 119.541
29 60.7629 136.164 129.975
30 63.8871 146.791 140.376
31 70.0774 160.949 154.421
32 73.9980 172.364 165.895
33 78.4594 185.003 177.013
34 84.8676 200.174 191.966
35 92.5689 215.201 207.516
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